

State of New Hampshire Public Utilities Commission 21 S. Fruit Street, Suite 10, Concord, NH 03301-2429

REVISED 5-3-18

APPLICATION FORM FOR

RENEWABLE ENERGY SOURCE ELIGIBILITY FOR

CLASS I THERMAL SOURCES WITH RENEWABLE THERMAL ENERGY CAPACITY

1,000,000 BTU/HR OR LESS

Pursuant to New Hampshire Administrative Code PUC 2500 Rules

• Please submit one (1) original and two (2) paper copies of the completed application and cover letter* to:

Debra A. Howland Executive Director New Hampshire Public Utilities Commission 21 South Fruit Street, Suite 10 Concord, NH 03301-2429

• Send an electronic version of the completed application and the cover letter electronically to <u>executive.director@puc.nh.gov</u>.

* The cover letter must include complete contact information and identify the renewable energy class for which the applicant seeks eligibility. Pursuant to PUC 2505.01, the Commission is required to render a decision on an application within 45 days of receiving a completed application.

If you have any questions please contact the Sustainable Energy Division at (603) 271-2431 or <u>RECApplicationGroup@puc.nh.gov</u>.

Only facilities that began operation after January 1, 2013 are eligible.

Is this facility part of a Com	mission approved aggregation?
Yes	No

Aggregator's Company Name:

Aggregator Contact Information:

Contents

Contents	2
Part 1. General Application Information	3
Part 2. Technology Specific Data	5
Part 3. Metering and Measurement of Thermal Energy and REC Calculations	5
Part 4. Affidavits	9
Attachment Checklist	10
Appendix A. Excerpt from Puc 2500 – Certain Thermal Metering Provisions	11

Attachment Labeling Instructions

Please label all attachments by Part and Question number to which they apply (e.g. Part 3-7). For electronic submission, name each attachment file using the Owner Name and Part and Question number (e.g. Pearson Part 3-7).

Part 1. General Application Information

Please provide the following information.

Applicant		
Name:		
Mailing Address:		
Town/City:	State:	Zip Code:
Primary Contact:		
Telephone:	Cell:	
Email Address:		
Facility		
Name:		
Physical Address:		_
Town/City:	State:	Zip Code:
If the facility does not have a physi	ical address, provide: Latitude:	Longitude:
Equipment Seller		
Company:	Contact:	
Mailing Address:		
Town/City:	State:	Zip Code:
Installer		
Name:		
Installer License Number, if applica	ble:	
Mailing Address:		
Town/City:	State:	Zip Code:
Primary Contact:		
Telephone:	Cell:	
Email Address:		
If the equipment was installed by the	he facility owner, check here:	

If the facility operator is different from the owner, please provide the following:

Facility Operator Name:		
Facility Operator Telephone Number:		
Independent Monitor		
Name:		_
Mailing Address:		
Town/City:	State: Z	Zip Code:
Primary Contact:		

Telephone:	 Cell:
Email Address:	

NEPOOL/GIS Asset ID and Facility Code

In order to qualify your facility's electrical production for RECs, you must register with the NEPOOL – GIS. Contact information for the GIS administrator follows:

Registry Administrator, APX Environmental Markets
224 Airport Parkway, Suite 600, San Jose, CA 95110
Office: 408.517.2174
<u>GIS@apx.com</u>

The GIS administrator will assist you in obtaining a GIS facility code and ISO-New England asset ID number.

GIS Facility Code #		Asset ID #	
Has the facility been	certified under another n	on-federal j	urisdiction's renewable portfolio standard?
Yes	No		

If you selected yes, *please provide proof of certification in the form of an attached document labeled as* **Attachment 1-8**.

Attach any supplementary documentation that will assist in classification of the facility and label supplementary documentation as **Attachment 1-9**.

Part 2. Technology Specific Data **All Technologies**

Date of initial operation using renewable source:

Renewable Energy Source:	Solar 🛛	Geothermal 🛛	Biomass 🖵
Rated Thermal Capacity			
Btu/hr		MW equivalent	
Please show your calculation here:			

Part 3. Metering and Measurement of Thermal Energy and REC Calculations

This section covers the thermal metering system including methods for calculation and reporting useful thermal energy. A copy of PUC 2506.04 of the RPS rules is included as Appendix A of this application.

Applicants for small thermal systems may choose to meter the thermal energy generated (Part 3A) or use a simplified approach employing run time meters (Part 3B) coupled with calculations to estimate energy production based on operating time.

Indicate method used, and complete corresponding section of the application:

Select	Attachment Number	Description
one		
	3A (see page 5 – 6)	Metering with a Heat Meter pursuant to 2506.04(g)(1)
	3B-Solar (see page 7)	Runtime metering of solar thermal pursuant to 2506.04(h)
	3B-Geothermal (see page 7)	Runtime metering of geothermal pursuant to 2506.04(i)
	3B-Biomass (see page 8)	Runtime metering of biomass pursuant to 2506.04(j)

Only complete the section of the application that corresponds with the attachment number checked above. **3A. Metering with a Heat Meter**

Using the table below, identify the thermal metering system packaged system or custom components (e.g., heat meters, flow meters, pressure and temperature sensors) used to measure the useful thermal energy and enter the accuracy of measurement for the entire system:

· · · · · · · · · · · · · · · · · · ·				
System or Component	Product name	Product Manufacturer	Model No.	Product Seller
Total System Ac	curacy (Percent)	%		

Total System Accuracy (Percent)

Attach component specification sheets (Accuracy, Operating Ranges) and label as Attachment 3A-1.	
Attach a simple schematic identifying the location of each sensor that is part of the metering system	
and label as Attachment 3A-2.	

Chec (com	k the applicable standard for meter accuracy prescribed in Puc 2506.04 among the six choices below Ipliance with Puc 2506.04 shall be certified by a professional engineer licensed by the state of New	N
Ham	pshire and in good standing).	
If the	e facility is using a liquid or air based system, check the method that applies:	
А	Installation and use of heat meters capable of meeting the accuracy provisions of European	
	Standard EN 1434-1 (2015 edition) published by CEN, the European Committee for	
	Standardization. The heat meter shall have the highest Class flow meter that will cover the	
	design flow range at the point of measurement and a temperature sensor pair of Class 5K or	
	lower.	
В	Installation and use of meters that do not comply with European Standard EN 1434-1, provided	
	that the manufacturers' guaranteed accuracy of the meters is ±5.0% or better.	
С	Use of an alternative metering method approved pursuant to Puc 2506.06, provided that the	
	accuracy of such method is ±5.0% or better.	

If the facility is using a steam-based system, check the method that applies:		
А	Installation and use of meters with accuracy of ±3.0% or better.	
	Installation and use of meters with system accuracy that do not meet 2.b.1) but are ±5% or	
В	better.	
С	Use of an alternative metering method approved pursuant to Puc 2506.06.	

Please summarize the manufacturer's recommended methods and frequency for metering system calibration and provide reference for source document (e.g. owners/operators manual):

REC Calculation Discount Factor

REC Calculation Discount factor for meter accuracy. (Enter 0 if no discount is required):

If the meters used to measure useful thermal energy comply with the accuracy of the European Standard EN 1434-1 for liquid systems or use of meters with accuracy of ±3.0% or better for steam systems enter zero, for all other systems enter the sum total of the manufacturer's guaranteed accuracy of the meters used or the accuracy of the alternative method approved pursuant to Puc 2506.06.

%

3B-Solar for Systems Using Solar Thermal Technologies

This method for calculating useful thermal energy is based on the run time of the collector system's circulating pump. Please fill out the following information regarding the meter at your facility.

Product Name

Product Manufacturer

Model Number

In order to calculate the useful energy produced by a solar thermal facility, please fill out the following information on variables determined one time for the calculations:

Variable	Definition	Value	Units	
R	ICC-SRCC OG100 rating on Category C Medium Radiation Conditions		Thousands of Btu per day	
L	Orientation and shading losses		Percentage as a decimal < 1	
h	Conversion factor from ICC-SRCC OG100 to hourly basis	11	Hours per day	
Please refer to Appendix A, Puc 2506.04 Metering of Sources that Produce Useful Thermal Energy subpart (h)				
to determine the useful thermal energy of your facility.				

3B-Geothermal for Systems Using Geothermal Thermal Technologies

This method for calculating useful thermal energy is based on the run time of the system's ground loop pump. Please fill out the following information regarding the meter at your facility.

Product Name

Product Manufacturer

Model Number

In order to calculate the useful energy produced by a geothermal thermal facility, please fill out the following information for each heat pump installed at facility:					
	Manufacturer	Series/Model	Part Load		Full Load
N			COP [-]	HC [MBtuH]	HC [MBtuH]

Total system heating capacity (sum of Full Load HC):

Please refer to Appendix A, Puc 2506.04 Metering of Sources that Produce Useful Thermal Energy Subpart (i) to determine the useful thermal energy of your facility.

3B-Biomass for Systems Using Thermal Biomass Technologies

This method for calculating useful thermal energy is based on the run time of the system's fuel auger. Please fill out the following information regarding the auger at your facility.

Product Name	
Product Manufacturer	
Model Number	

Variable		Definition	Value	Units
D	Def	ault pellet density	0.0231	Pounds
R	Aug	ger revolutions		Per hour
V	Aug Assu a. 5 c b. 20 c. 50 d. 95 e. 15	ger feed volume me one of the following: cubic inches per revolution for augers with a 2" inside diameter; oubic inches per revolution for augers with a 3" inside diameter; cubic inches per revolution for augers with a 4" inside diameter; oubic inches per revolution for augers with a 5" inside diameter; oubic inches per revolution for augers with a 6" inside diameter		Cubic inches per auger revolution
EC	Def	ault energy content of the fuel pellet	7870	Btu/lb
	Default thermal efficiency (choose one):			
A 6 F		Based on the manufacturer's warranty		Percentage converted to a
ASE		Based on average seasonal thermal efficiency		decimal
		Based on default value of 65%	0.65	

□ If a thermal biomass facility, provide the New Hampshire Department of Environmental Services approval letter that the facility meets the provisions set forth in Puc 2505.02(d)15d as **Attachment 3-A**. (See the proposed best management practices that are consistent with the recommendations in the report entitled "Emission Controls for Small Wood-Fired Boilers" prepared for the US Forest Service, Western Forestry Leadership Coalition, by RSG, Inc., May 6, 2010, as specified in Appendix B.)

Part 4. Affidavits

The following affidavits must be completed by the owner as applicant attesting to the accuracy of the contents of the application pursuant to PUC 2505.02 (b) (14).

Owner's Affidavit

AFFIDAVIT

1. I,, have reviewed the contents of this application and attest that it is accurat is signed under the pains and penalties of perjury.				
 I,, attest that the system is installed and operating in compliance with applica building codes. 				
Applicant's Signature		Date		
Applicant's Printed Name				
Subscribed and sworn before me this	Day of	(month) in the year		
County of	State of			
My Commission E	xpires			
My Commission E	xpires			
NH Professional Engineer's Affida	vit			
	AFFIDAVIT			
I, REC eligibility requirements of Puc 2500, includir standards and REC calculation methodologies.	, attest that this facility ng the thermal meterin	r meets the requirements of the thermal g and measurement methodologies and		
Professional Engineer's Signature		Date		
Professional Engineer's Printed Name				

NH Professional Engineer's License Number

PE Stamp:

Attachment Checklist				
Application Section	Item Description			
Part 1				
Attachment 1-A	If the facility has been certified under another non-federal jurisdictions' renewable portfolio standard, provide proof thereof.			
	Please note that GIS operating rules REQUIRE an independent monitor. Applications will not be fully certified unless an independent monitor is identified.			
Attachment 1-B	Attach any supplementary documentation that will help in the classification of this facility.			
Part 3				
Attachment 3A -1	Attach component specification sheets (Accuracy, Operating Ranges)			
Attach ment 3A -2Attach a simple schematic identifying the location of each sensor that is part of the metering system.				
Part 3B-1				
Biomass <u>only</u>	Biomass – best management practices approval from DES			

Appendix A. Excerpt from Puc 2500 – Certain Thermal Metering Provisions

For complete rules and requirements related to the RPS and REC eligibility, please refer to Puc 2500.

Puc 2506.04 Metering of Sources that Produce Useful Thermal Energy.

(a) Sources producing useful thermal energy shall comply with this part in metering production of useful thermal energy.

(b) Sources shall retain an independent monitor to verify the useful thermal energy produced.

(c) Sources shall take data readings for the measurement of useful thermal energy at least every hour. The useful thermal energy produced shall be totaled for each 24 hour period, each monthly period, and each quarter.

(d) Sources shall install heat meters to measure thermal energy output in accordance with the manufacturer's specifications and as specified in this part. The heat meters shall operate within the conditions for which the meter accuracies are guaranteed.

(e) Large thermal sources using a liquid or air based system shall measure the useful thermal energy produced using one of the following methods:

(1) Installation and use of heat meters with an accuracy that complies with European Standard BS EN 1434-1 (2015 edition) published by CEN, the European Committee for Standardization, available as specified in Appendix B, and that complies with paragraph (k), (l) or

(m). The heat meter shall have the highest class flow meter that will cover the design flow range at the point of measurement and a temperature sensor pair of Class 5K or lower. Compliance shall be confirmed by a professional engineer licensed by the state of New Hampshire and in good standing;

(2) Installation and use of meters that do not comply with subparagraph (e)(1), provided that the manufacturers' guaranteed accuracy of the meters is $\pm 5.0\%$ or better, and provided that a professional engineer licensed by the state of New Hampshire and in good standing confirms that the meters were installed and operate according to the manufacturers' specifications and in accordance with paragraph (k), (l) or (m); or

(3) Use of an alternative metering method approved pursuant to Puc 2506.06, provided that the accuracy of any such method is $\pm 5.0\%$ or better, and provided that a professional engineer licensed by the state of New Hampshire and in good standing confirms that the source implemented the alternative method as approved by the commission and certifies that the alternative method achieves the stated accuracy of $\pm 5.0\%$ or better.

(f) Large thermal sources using a steam-based system shall measure the useful thermal energy produced using one of the following methods:

(1) Installation and use of meters with accuracy of $\pm 3.0\%$ or better, which compliance shall be confirmed by a professional engineer licensed by the state of New Hampshire and in good standing and in accordance with (m) below;

(2) Installation and use of meters that do not comply with the accuracy of subparagraph (f)(1), provided that the manufacturer's guaranteed accuracy of the meters is $\pm 5.0\%$ or better, and provided

that a professional engineer licensed by the state of New Hampshire and in good standing confirms that the meters were installed and operate according to the manufacturer's specifications and in accordance with (m) below; or

(3) Use of an alternative metering method approved pursuant to this section, provided that the accuracy of any such method is $\pm 5.0\%$ or better, and provided that a professional engineer licensed by the state of New Hampshire and in good standing confirms that the source implemented the alternative method and confirms that the alternative method achieves the stated accuracy of $\pm 5.0\%$ or better.

(g) Small thermal sources shall measure useful thermal energy produced using one of the following methods:

(1) For any small thermal sources, the methods described in (e) or (f) above;

(2) For small thermal sources using solar thermal technologies, the method described in (h) below;

(3) For small thermal sources using geothermal technologies, the method described in (i) below; or

(4) For small thermal sources using thermal biomass technologies, the method described in (j) below.

(h) Small thermal sources that elect pursuant to (g)(2) above to measure useful thermal energy pursuant to this paragraph shall calculate useful thermal energy produced by small thermal sources using solar technologies as follows:

(1) "Q" means thermal energy generated, stated in Btus;

(2) "R" means the Solar Rating and Certification Corporation (SRCC) OG100 rating on Medium Radiation (1500 Btu/ft².day) C (36° F) Conditions, stated in thousands of Btus per day;

(3) "L" means the orientation and shading losses calculated based on solar models such as Solar Pathfinder, T-sol, Solmetric, or another functionally equivalent solar model, converted from a percentage to the equivalent number less than one;

(4) "t" means the total operating run time of the circulating pump as metered, stated in hours;

(5) "h" means 11 hours per day to convert the SRCC OG100 rating to an hourly basis, the conversion factor; and

(6) To calculate Q, the useful thermal energy produced by small thermal sources using solar technologies, the source shall compute the product of R, t, 1,000 and the result of 1 minus L, and divide the result by h, as in the formula below:

Q = [R * t * 1,000 * (1 – L)] / h

(i) Small thermal sources that elect pursuant to (g)(3) above to measure useful thermal energy pursuant to this paragraph shall calculate useful thermal energy produced by small thermal sources using geothermal technologies as follows:

(1) "Q" means thermal energy generated, stated in Btus;

(2) "HC" means the Air Conditioning, Heating and Refrigeration Institute (AHRI) certified heating capacity at part load, stated in Btus per hour;

(3) "COP" means the AHRI Certified Coefficient of Performance;

(4) "t" means total operating run time of the heat pump when operating in heating mode, stated in hours; and

(5) Small thermal sources using geothermal technologies shall calculate Q, the useful thermal energy produced for each heat pump, by multiplying heat pump HC by the difference between heat pump COP and 1, multiplying the result by t, and dividing the result by COP, as in the formula below:

$$Q = [HC * (COP - 1) * t] / COP$$

(j) Small thermal sources that elect pursuant to (g)(4) above to measure useful thermal energy pursuant to this paragraph shall calculate useful thermal energy produced by small thermal sources using thermal biomass renewable energy technologies as follows:

- (1) "Q" means the thermal energy generated, stated in Btus;
- (2) "D" means the default pellet density, which shall be 0.0231 pounds per cubic inch;
- (3) "R" means the auger revolutions per hour;
- (4) "V" means auger feed volume, stated in cubic inches per auger revolution;
- (5) Small thermal sources shall assume that V equals one of the following:
 - a. 5 cubic inches per revolution for augers with a 2-inch inside diameter;
 - b. 20 cubic inches per revolution for augers with a 3-inch inside diameter;
 - c. 50 cubic inches per revolution for augers with a 4-inch inside diameter;
 - d. 95 cubic inches per revolution for augers with a 5-inch inside diameter; or
 - e. 150 cubic inches per revolution for augers with a 6-inch inside diameter;
- (6) "EC" means the default energy content of pellet fuel, which shall be 7870 Btu per pound;

(7) "ASE" means the default thermal efficiency expressed as a percentage based on the manufacturer's warranty of average seasonal thermal efficiency, or based on a default thermal efficiency of 65%;

(8) "t" means the total auger run time in hours as metered;

(9) The estimated amount of fuel burned, that is, the product of D, R, V and t, shall be verified by the fuel purchase records and fuel inventory; and

(10) Small thermal sources using thermal biomass renewable energy technologies with wood pellets as the fuel source may calculate Q, the useful thermal energy produced, by computing the product of D, R, V, EC, ASE and t, as in the formula below:

Q = (D * R * V * EC * ASE * t)

(k) Large thermal sources, and small thermal sources that elect pursuant to (g)(1) above, using solar thermal technologies shall calculate useful thermal energy as follows:

(1) " Q_g " means the heat generated in the collector loop, stated in Btus;

(2) "dm/dt" means the mass flow of the collector working fluid measured near the inlet to the solar storage tank, stated in pounds per hour;

(3) " c_p " means the specific heat of the collector fluid, stated in Btus per pound of mass, degrees Fahrenheit (Btu/lbm-°F);

(4) "Ti" means the collector loop inlet temperature measured near the outlet of the solar storage tank, stated in degrees Fahrenheit;

(5) "To" means the collector loop outlet temperature measured near the inlet to the solar storage tank, stated in degrees Fahrenheit;

(6) "t" means the frequency at which data readings are recorded, stated in hours;

(7) Meter sensors shall be installed on the collector loop as close to the water storage tank as practical and in accordance with the meter manufacturer's guidance; and

(8) Thermal sources using solar thermal technologies shall calculate Q, the useful thermal energy produced, by calculating the product of dm/dt, c_{p} , the difference between To and Ti, and t, as stated in the formula below:

 $Q_{g} = (dm/dt)*c_{p}*(To -Ti)*t$

(I) Large thermal sources, and small thermal sources that elect pursuant to (g)(1) above, using geothermal technologies shall calculate useful thermal energy as follows:

(1) "Q_g" means heat generated in the ground loop, stated in Btus;

(2) "dm/dt" means mass flow measured near the outlet of the ground loop, stated in pounds per hour;

(3) "c_p" means specific heat of the working fluid, stated in Btu/lbm-°F;

(4) "t" means the frequency at which data readings are recorded, stated in hours;

(5) "Ti" means ground loop inlet temperature measured at the inlet to the ground loop, stated in degrees Fahrenheit;

(6) "To" means ground loop outlet temperature measured at the outlet from the ground loop, stated in degrees Fahrenheit;

(7) Bleed points, supplemental boilers, and cooling towers shall be excluded from the calculation;

(8) Meter sensors shall be installed on the ground loop as close to the ground loop inlet and outlet as practical and in accordance with the manufacturer's recommendation; and

(9) Thermal sources using geothermal technologies shall calculate Q, the useful thermal energy produced, by calculating the product of dm/dt, c_p , the difference between To and Ti, and t, as stated in the formula below:

 $Q_{g} = (dm/dt) * c_{p} * (To -Ti) * t$

(m) Large thermal sources, and small thermal sources that elect pursuant to (g)(1) above, using thermal biomass renewable energy technologies shall calculate useful thermal energy as follows:

(1) "Q_g" means the thermal energy generated from biomass, stated in Btu;

(2) "dm_{out}/dt" means mass flow metered upstream of distribution and downstream of parasitic loads, stated in pounds per hour;

(3) "h_{out}" means the specific enthalpy at the metering point determined by temperature data and, for superheated steam, by pressure data, stated in Btus per pound;

(4) "dm_{in}/dt" means mass flow of water into the feedwater or condensate pumps, stated in pounds per hour;

(5) " h_{in} " means the specific enthalpy at the metering point which will be a function of the enthalpy of incoming condensate and make-up water prior to the first condensate or feedwater pumps, stated in Btus per pound;

(6) "t" means the intervals at which readings are recorded, stated in hours;

(7) All metering systems shall measure boiler feedwater flow, pressure, and temperature as close to the first feedwater pump inlet as possible, thereby excluding the deaerator;

(8) Metering for systems that produce hot water shall include sensors for temperature and hot water mass flow placed as close as possible to the boiler hot water distribution header inlet;

(9) Metering for systems that produce steam shall include sensors for temperature, pressure, and steam flow placed as close as possible to the steam distribution header inlet and thereby prior to distribution to process loads;

(10) For saturated steam systems, pressure and temperature shall be measured to verify the absence of superheat at the measurement point;

(11) For superheated systems, both pressure and temperature measurements shall be required;

(12) Regardless of phase, the enthalpy under the measured conditions shall either be calculated using the formulas in The International Association for the Properties of Water and Steam (IAPWS) Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, August 2007 revision, http://www.iapws.org/relguide/IF97-Rev.pdf, as specified in Appendix B, or taken from IAPWS or derivative steam tables; and

(13) Thermal sources using thermal biomass renewable energy technologies shall calculate Q, the useful thermal energy produced, by calculating the product of dm_{out}/dt , (h_{out}) , and t, and subtract from that number the product of $dm_{in}/dt_{i}h_{in}$ and t, as stated in the formula below:

 $Q_g = [dm_{out}/dt *(h_{out}) * t] - [dm_{in}/dt *(h_{in}) * t]$

Puc 2506.06 Request for Alternative Method for Measuring Thermal Energy.

(a) A source shall not use an alternative metering method until that alternative method is approved by the commission.

(b) A source seeking approval of an alternative method shall provide the commission the following information:

(1) The name, mailing address, daytime telephone number, and e-mail address of the person requesting approval for the alternative method;

(2) The name and location of the source at which the alternative method will be implemented;

(3) A description of the metering method otherwise required by these rules and the reasons it cannot be used with the applicant's facility;

(4) A description of the proposed alternative method;

(5) Technical data and information demonstrating that the accuracy of the proposed alternative method will be functionally equivalent to that achieved by the method otherwise required by these rules, such data and information may include third party data such as product test results from independent test laboratories, performance data based on nationally recognized product test/certification programs, published resource data for use in calculations, and examples of the use of the method by other organizations for similar purposes; and

(6) A statement from a professional engineer licensed by the state of New Hampshire and in good standing of the meter accuracy rate that will be achieved by the alternative metering method and that the proposed alternative method is technologically sound.

(c) The commission shall approve an alternative metering method that satisfies the requirements of (b) above.